Membrane protein folding and oligomerization: the two-stage model.

نویسندگان

  • J L Popot
  • D M Engelman
چکیده

We discuss the view that the folding of many, perhaps most, integral membrane proteins can be considered as a two-stage process. In stage I, hydrophobic alpha-helices are established across the lipid bilayer. In stage II, they interact to form functional transmembrane structures. This model is suggested by the nature of transmembrane segments in known structures, refolding experiments, the assembly of integral membrane protein from fragments, and the existence of very small integral membrane protein subunits. It may extend to proteins with a variety of functions, including the formation of transmembrane aqueous channels. The model is discussed in the context of the forces involved in membrane protein folding and the interpretation of sequence data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane protein folding: beyond the two stage model.

The folding of alpha-helical membrane proteins has previously been described using the two stage model, in which the membrane insertion of independently stable alpha-helices is followed by their mutual interactions within the membrane to give higher order folding and oligomerization. Given recent advances in our understanding of membrane protein structure it has become apparent that in some cas...

متن کامل

Helical membrane protein folding, stability, and evolution.

Helical membrane protein folding and oligomerization can be usefully conceptualized as involving two energetically distinct stages-the formation and subsequent side-to-side association of independently stable transbilayer helices. The interactions of helices with the bilayer, with prosthetic groups, and with each other are examined in the context of recent evidence. We conclude that the two-sta...

متن کامل

Distinct protein interfaces in transmembrane domains suggest an in vivo folding model.

Given the known high-resolution structures of alpha-helical transmembrane domains, we show that there are statistically distinct classes of transmembrane interfaces which relate to the folding and oligomerization of transmembrane domains. Distinct types of interfaces have been categorized and refer to those between: the same polypeptide chain, different polypeptide chains, helices that are sequ...

متن کامل

Repositioning of Transmembrane α-Helices during Membrane Protein Folding

0022-2836/$ see front matter © 2010 E We have determined the optimal placement of individual transmembrane helices in the Pyrococcus horikoshii GltPh glutamate transporter homolog in the membrane. The results are in close agreement with theoretical predictions based on hydrophobicity, but do not, in general, match the known three-dimensional structure, suggesting that transmembrane helices can ...

متن کامل

Folding of the voltage-gated K+ channel T1 recognition domain.

Voltage-gated K(+) channels (Kv) are tetramers whose assembly is coordinated in part by a conserved T1 recognition domain. Although T1 achieves its quaternary structure in the ER, nothing is known about its acquisition of tertiary structure. We developed a new folding assay that relies on intramolecular cross-linking of pairs of cysteines engineered at the folded T1 monomer interface. Using thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 29 17  شماره 

صفحات  -

تاریخ انتشار 1990